Holistic Management of Brownfield Regeneration - HOMBRE

Maaike Blauw
Hans van Duijne

www.zerobrownfields.eu

AquaConsoil April18, Barcelona
Soil challenge

Soil degradation a world wide challenge!

Soil Sealing in EU:
-loss of important soil functions
-1990-2000: 375 ha/day lost

Ref. COM (2012) 46

AquaConsoil 13 mei 2013

www.zerobrownfields.eu
Since 1950:
surface area cities increased 78%, only 33% population

- Urban expansion 1-2 % per year
- Urban sprawl around metropolitan regions
- Decreasing settlement density

→ More and more brownfields

Source: EEA
Brownfields

Cabernet* has defined for **brownfields as sites which**:

- have been affected by former uses of the site or surrounding land;
- are derelict or underused;
- are mainly in fully or partly developed urban areas;
- may have real or perceived contamination problems; and
- require intervention to bring them back to beneficial use.

Classes of Brownfields:

A Sites - Driven by private funding
B Sites - Funded through public-private co-operation
C Sites - mainly public sector or municipality projects

(*) Concerted Action on Brownfield and Economic Regeneration Network

AquaConsoil 13 mei 2013
The HOMBRE project

More dividend from Brownfield regeneration for environment, economy and society

Through:

• Better understanding why, how, where and when BF’s are formed
• Better operations, better implementation of state of the art technologies
• Better planning and more attractive communication technologies
• More creative solutions for long-term land use of current and potential future BF’s.
Starting point for Zero BF: CircUse land use cycle

- Reintroduction
- Planning
- Use
- Cessation of use
- Abandonment
- interim use

Rejection of sites which are unsuitable for new uses on a long-term basis

Fläche im Kreis, 2005

instrument mix:
- legal, planning, and economic instruments
- cooperative steering approaches

Exceptional: Release of new sites for construction in the green belt
However, different perspectives...

circular land use
occupation perspective
(for specific site)

Risk of BF formation
if not *managed* well
...different perspectives...

circular development
project developer management perspective
(goes from one site to the next)
Zero Brownfields Perspective

circular land management & monitoring cycle
long term –perpetual–administrative management perspective
(for specific site or portfolio of sites)

AquaConsoil 13 mei 2013 www.zerobrownfields.eu
HOMBRE believes an important lever to bring BF back into beneficial use is to assess, enable and optimize their own potential for delivering useful services and goods and hence provide

new opportunities

For the BF itself and its surroundings

DELIVER GOODS AND SERVICES THROUGH INTEGRATED PROCESSES AND LAND USE
Technology Combinations for More Sustainable BF Regeneration

Technology Trains

Technology Trains are integrated processes. They start with the remediation/restoration of a site and end with new site maintenance / operation / management.

A MEAN TO BRIDGE THE GAP BETWEEN A SITE IN ITS CURRENT STATE AND A SPECIFIC OBJECTIVE FOR LAND-USE (IN THIS CASE A REDEVELOPMENT PROJECT WITH SPECIFIC OBJECTIVES PLANNED BY STAKEHOLDERS).

A MEAN TO PROVIDE SERVICES (VALUE) IN THE REGENERATION PROCESS:
- REMEDIATION / REGENERATION PHASE
- NEW LAND-USE (OPERATION, MAINTENANCE, MANAGEMENT)

IN SOME CASES WHERE NO PROJECT HAS BEEN PROPOSED, AN UNLOCKER TO LONG TERM BF (TYPICALLY C-SITES)
Technology Trains
Soft re-use

More creative solutions for long-term land use of current and potential future BF’s.
SOFT RE-USES → SERVICES

Temperature regulation
Urban climate - comfort

CO2 absorption
Climate change

Landscape improvement
amenities

Biomass production
Bio-energy

Green cover
Flood mitigation

Carbon sequestration
Climate change

Nutrient buffering capacity
Soil improvement

Contaminant stabilization
= risk management

Low inputs
Maximize effects

HOMBRE’s FOCUS

ACTIONS

EFFECTS / BENEFITS
→ SERVICES
The Brownfield Navigator (BFN)

• Helps stakeholders to navigate towards a successful BF regeneration
• Assess key aspects (environmental, economic, social)
• Different scales
• Combination of DSS-GIS-Effect tools

• Early warning
• Stakeholder participation
• Inspiration for successful regeneration
Process

<table>
<thead>
<tr>
<th>Step</th>
<th>Identification</th>
<th>Scoping</th>
<th>Opportunities</th>
<th>Assessment</th>
<th>Evaluation & monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Results</td>
<td>Tools in BFN</td>
<td>Scale</td>
<td>Results</td>
<td>Tools in BFN</td>
</tr>
<tr>
<td></td>
<td>Assessment of the regeneration potential.</td>
<td>Default list necessary data. Definition of A, B & C sites.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Results</td>
<td>Tools in BFN</td>
<td>Scale</td>
<td>Results</td>
<td>Tools in BFN</td>
</tr>
<tr>
<td></td>
<td>Vision on the location (or cluster of locations).</td>
<td>Default list success criteria for sustainable redevelopment of BF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Results</td>
<td>Tools in BFN</td>
<td>Scale</td>
<td>Results</td>
<td>Tools in BFN</td>
</tr>
<tr>
<td>4</td>
<td>Results</td>
<td>Tools in BFN</td>
<td>Scale</td>
<td>Results</td>
<td>Tools in BFN</td>
</tr>
<tr>
<td>5</td>
<td>Results</td>
<td>Tools in BFN</td>
<td>Scale</td>
<td>Results</td>
<td>Tools in BFN</td>
</tr>
</tbody>
</table>

[Image: www.zerobrownfields.eu]
HOMBRE Cases

- **Solec Kujawski**, Poland
 Urban & post-industrial (80ha)

- **Terni**, Italy
 Industrial (10 ha)

- **Genoa**, Italy
 Industrial, Urban (22ha)

- **Turceni – Jiu**, Romania
 Mining, rural (250 ha)

- **Gelsenkirchen**, Germany
 Former coal mine (22ha)

- **Halle** (Saale), Germany
 Urban (3ha)

- **Markham Vale**, UK
 Mining, Urban area

- **Rejuvenate II cases**
 Crop based sites, Sweden

[Link: www.zerobrownfields.eu]
Thank you

Questions please!

MAAIKE.BLAUW@DELTARES.NL

Other HOMBRE presentations at AquaConsoil:

• EcogROUT, a sustainable in-situ carbonate based grouting technology. Session A1

• Insights into factors limiting intrinsic biodegradation of chlorinated etheneS at ATES. Session D1.3

• Conceptual site or project models for sustainability assessment. Session D3.3

• Special session 7: Synergies on the land use cycle (HOMBRE and TIMBRE session)