COMBINED NANO-BIO TECHNOLOGY FOR REMEDIATION OF CONTAMINATION BY HEXAVALENT CHROMIUM:

OBSERVED EFFECTS OF IN-SITU NANO ZVI APPLICATION ON POPULATION OF INDIGENOUS MICROORGANISMS

Ondrej Lhotsky a, Jan Nemecek b, Tomas Cajthaml c

a DEKONTA, a.s.
Drehtovice 109, Stehelveves 273 42, Czech Republic, lhotsky@dekonta.cz

b ENACON s.r.o.

Institute of Microbiology of the Academy of Sciences of the Czech Republic
COMBINED NANO-BIO TECHNOLOGY FOR REMEDIATION OF CONTAMINATION BY HEXAVALENT CHROMIUM

In Situ Geo-fixation method

Cr$^{6+}$ – toxic, soluble, reactive
Present in aqueous form

→ Reduction

Cr$^{3+}$ less reactive and toxic,
Formation of insoluble compounds

COMBINED NANO-BIO REMEDIATION TECHNOLOGY

1st step – chemical reduction
utilization of nZVI

2nd step – bio-reduction
indigenous microorganisms
stimulation

Laboratory experiments carried out to optimize the technology

Pilot scale test performed on Cr$^{6+}$ contaminated locality
Background information

COMBINED NANO-BIO REMEDIATION TECHNOLOGY

- Indigenous microorganisms proved to be capable of bio-reduction after addition of organic substrate
- No adverse effects of nZVI application on indigenous microorganisms were observed during the laboratory experiments
- Risk of nZVI application on real Cr\(^{6+}\) contaminated site
- Monitoring of the locality before and after nZVI application
Background information

Locality Kortan

- old contamination by Cr$^{6+}$ originating from potassium dichromate
- nowadays Cr$^{6+}$ concentrations in ground water do not exceed 3 mg/l
- aquifer - shallow (9-10 m)
 - well permeable
- water table at a depth of 4-5 m

Monitoring and application system

- 7 different newly drilled boreholes
Background information

nZVI application in end of august 2012

- NANOFER 25 used (produced by NANO IRON, Ltd.)
 - reactive, stabilized solely by an inorganic modifier
 - higher toxic potential

- 120 kg of nZVI applied in form of suspension in 60 m³ of tap water
 - 2 g/l nZVI
 - based on previous laboratory tests
 - application by gravity
Materials and methods

- **In Situ measurement of pH and ORP**
- **Cr\(^{6+}\) concentration analysis**
- **Microbial Cultivation Tests**
 - Anaerobic, facultative anaerobic bacteria, sulphate reducing bacteria and psychrophilic bacteria.
- **Toxicological tests**
 - with *Vibrio Fischeri*.
- **Phospholipid fatty acid (PLFA) analysis**
 - determines specific fatty acids characteristic for different groups of microorganisms commonly found in the environment.
Results – pH

- Before application average pH 4.5 – 6
- In application boreholes significant increase, pH still high
- In monitoring boreholes decreased soon
Results – ORP

- Before application average ORP between +200 to +400 mV
- In application boreholes significant decrease, ORP still low
- In monitoring boreholes decreased, increased in time
Results – Cr$^{6+}$

- Before application Cr$^{6+}$ conc. varied between 0.8 – 2.5 mg/l
- In application boreholes decrease under the limit of quantification
- In monitoring boreholes decreased, increased in time
Results

Cultivation tests - Psychrophilic bacteria

- Before application average psychrof. bact. counts 1.2×10^3 CFU/ml
- After application average psychrof. bact. counts 1.3×10^3 CFU/ml
- No significant change observed after nZVI application
Results

Cultivation tests

- Sulphate reducing bacteria
 - not detected during the monitoring

- Anaerobic and facultative anaerobic bacteria
 - only few detected before and also after application
Aqueous samples analyzed
- filtered through microbial filters
- extracted for PLFA analyses

Several parameters analyzed:

* bacteria, anaerob, actinobacteria, G+, G-, total mikrob biomas, fungi
Results and Discussion

Effect of nZVI application on indigenous microorganisms

- No significant change in parameter bacteria after application
- Surprisingly high anaerob in borehole PV-214 after application – fault?
- No significant changes for both parameters in the rest of boreholes
Results

Ecotoxicological tests with *Vibrio fischeri*

- Low toxic effects of ground water against luminescence - only relative inhibition recorded
- Stimulation effects after application
- Cr$^{6+}$ concentration is not the only parameter affecting toxicity
Conclusions

Observed effects of in situ nZVI application

- Decrease of ORP and Cr6+ concentration, increase of pH
- No significant changes in amount of cultivated bacteria and concentrations of PLFA were observed
 - No adverse effects of nZVI application observed
 - The decrease of Cr6+ concentration did not enhance biomass growth
- Composition of microbial biomass seems not to be significantly affected
- Toxicological tests did not show increase of toxicity to \textit{Vibrio fischeri}
Acknowledgement

This presentation presents selected results of the project TA01021792, which was created with financial support of the Technology Agency of The Czech Republic.

Thank you for your attention.

Ondřej Lhotský
Dekonta, a.s.
lhotsky@dekonta.cz