Tools and concepts for sustainable management of the subsurface in the Netherlands: A technical investigation

Jasper Griffioen, Joke van Wensem, Justine Oomes, Frans Barends (all TCB), Jaap Breunese, Hans Bruining, Theo Olsthoorn, Fons Stams, Almer van der Stoel
Environmental management ain’t easy

Conflicts among stakeholders are more common than exceptional

The quarrelsome relation in environmental management

<table>
<thead>
<tr>
<th>authorities</th>
<th>citizens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Law Power</td>
<td>Knowledge Power</td>
</tr>
<tr>
<td>Compulsion Power</td>
<td>Media Power</td>
</tr>
</tbody>
</table>

(Ph.D Winnubst)
TCB working group Sustainable Management of Subsurface

What are technical tools for sustainable management of the subsurface?

What goes wrong – What goes right
Why do things go wrong – go right

Approach made:
Cases and lessons learned → an analysis
Theoretical concepts → an investigation
Cases investigated

1. Underground constructions
2. Moving earth and making lakes shallower
3. Soil remediation
4. Aquifer thermal energy storage
5. CO₂ storage survey
6. Salt mining and land subsidence
7. Geothermics
Core elements related to use of the subsurface

<table>
<thead>
<tr>
<th>Technological/scientific</th>
<th>Administrative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary research</td>
<td>Assessment</td>
</tr>
<tr>
<td>Suitability of the subsurface</td>
<td>Planning</td>
</tr>
<tr>
<td>Application of theory in practice</td>
<td>Precautions</td>
</tr>
<tr>
<td>Risk estimate</td>
<td>Agreements and responsibilities</td>
</tr>
<tr>
<td>Monitoring WITH threshold values</td>
<td>Liability</td>
</tr>
<tr>
<td>Measures in the event of failure</td>
<td>Direction and guidance</td>
</tr>
<tr>
<td>Transparency of democratic procedures</td>
<td>Transparent democratic procedures</td>
</tr>
</tbody>
</table>
The sustainability issue - 1

<table>
<thead>
<tr>
<th>Properties of the use itself</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Duration</td>
</tr>
<tr>
<td></td>
<td>Optimisation</td>
</tr>
<tr>
<td></td>
<td>Scarcity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Social issues</th>
<th>Political aims</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Usefulness and need</td>
</tr>
<tr>
<td></td>
<td>Effect and consequence</td>
</tr>
</tbody>
</table>

Continuous communication !!!!!
Awareness raising on, in particular, usefulness and need

Maintenance of good and usable subsurface is a public interest
The sustainability issue – Legal principles

1. Precautionary principle
2. Obligation of care
 - Prevention
 - Rectifying pollution at the source
 - ALARA - As Low As Reasonably Achievable
3. Polluter pays/stand-still

The precautionary principle asks for
- Risk-limiting measures
- Application of risk management strategies
Hand-on-the-tap risk management

See De Waal et al. (2012). Neth. J. Geosci. (91/3), 385-399
Assessment methodologies on sustainability

They exist but are not often applied to subsurface activities

- Social cost-benefit analysis
- Life cycle assessment
- Sustainability profile of a location
- Environmental impact assessment

Specifically for energy

- Concept of useful energy
Recommendations made

- Management by scarcity instead of by demand
 - sustainable resource-driven management
 - legal instruments
 - economic
 - communicative
- Implement closed-loop monitoring for riskful activities
- For heterogeneity and unknown features, apply precautionary principle
 - Learning by doing
- Responsibility and liability must be set out
- Consider reversibility of impacts
- Consider abandonment, too
Thank you for your attention

www.tcbodem.nl
Soil Protection Technical Committee

Jasper Griffioen: also at
Deltaries